## NON NON A

# PERLAST® Benchmark Report



### **Key Perlast® Materials**

Benchmark testing was carried out by an external third-party test house to compare the performance characteristics of five perfluoroelastomer grades.

### Typical material properties taken from published datasheets

| Properties                     | Unit   | Perlast <sup>®</sup> | Perlast® | Perlast® | Comp.<br>Grade | Comp.<br>Grade | Comp.<br>Grade |
|--------------------------------|--------|----------------------|----------|----------|----------------|----------------|----------------|
|                                |        | G77X                 | G80A     | G75B     | Α              | В              | С              |
| Max. Temp.                     | °C     | 350                  | 310      | 325      | 327            | 316            | 275            |
| 100% Modulus                   | MPa    | 9.1                  | 15.0     | 16.0     | 11.2           | 7.2            | 9.1            |
| Tensile Strength               | MPa    | 18.0                 | 19.0     | 18.0     | 17.9           | 16.9           | 15.2           |
| Elongation at break            | %      | 170                  | 150      | 125      | 160            | 150            | 160            |
| Hardness                       | ShoreA | 77                   | 81       | 85       | 75             | 75             | 75             |
| Compression Set<br>72h @ 200°C | %      | 8                    | 18       | 18       | 13             | 14             | 25             |

### **Chemical Resistance Summary**

| Properties                                           | Perlast® | Perlast® | Perlast® | Comp.<br>Grade | Comp.<br>Grade | Comp.<br>Grade |
|------------------------------------------------------|----------|----------|----------|----------------|----------------|----------------|
|                                                      | G77X     | G80A     | G75B     | Α              | В              | С              |
| Acids<br>(Nitric, sulphuric,<br>hydrochloric)        | 1        | 1        | 1        | 1              | 1              | 1              |
| Alkalis<br>(NaOH, KOH, Mg(OH)2)                      | 2        | 1        | 1        | 2              | 2              | 1              |
| Amines<br>(ethylenediamine,<br>ethanolamine)         | 3        | 1        | 3        | 3              | 3              | 1              |
| Water / Steam<br>(250°C)                             | 3        | 1        | 1        | 3              | 3              | 1              |
| Ketones<br>(acetone, MEK, MIBK)                      | 1        | 1        | 1        | 1              | 1              | 1              |
| Esters<br>(ethylacetate)                             | 1        | 1        | 1        | 1              | 1              | 1              |
| Ethers<br>(dimethylether,<br>dietheylether)          | 1        | 1        | 1        | 1              | 1              | 1              |
| Aldehydes<br>(acetaldehyde)                          | 1        | 1        | 1        | 1              | 1              | 1              |
| Alcohols<br>(methanol, ethanol)                      | 1        | 1        | 1        | 1              | 1              | 1              |
| Hydrocarbons<br>(benzene, toluene, xylene)           | 1        | 1        | 1        | 1              | 1              | 1              |
| Sour gas<br>(H <sub>2</sub> S)                       | 1        | 1        | 1        | 1              | 1              | 1              |
| Lubricating Oil<br>(di-ester and petroleum<br>based) | 1        | 1        | 1        | 1              | 1              | 1              |
| Fluorinated Fluids<br>(HCFC, fluorocarbon oils)      | 3        | 3        | 3        | 3              | 3              | 3              |

1 = Excellent, little or no effect.

2 = Good, moderate (10-19%) swelling and change in physical properties.
3 = Do not use, significant (>20%) swelling and noticeable change in physical properties

### Immersion Testing in Acid

When immersed in 70% nitric acid for 168 hours at 80°C Perlast® G77X and competitor grade A and B exhibited the smallest changes in hardness (Shore A) & volume swell.

Perlast® G80A exhibited the smallest changes in elongation (EOB).

### Immersion in 70% nitric acid (168h at 80°C) % change

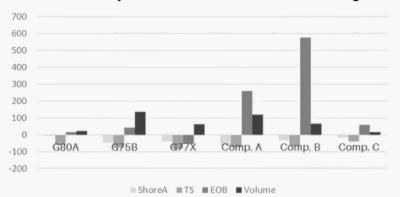


**ShoreA** = hardness **TS** = tensile strength **EOB** = elongation at break **Volume** = swell

### Images of the O-ring surfaces after ageing 20 x magnification

The test samples were BS 214 O-rings with each material grade tested side by side.




Summary:
Perlast® G80A is
a suitable
alternative to
competitor
grades in acids.

### Immersion Testing in Amines

When immersed in pure ethylendiamine for 168 hours at 100°C Perlast® G80A outperforms Perlast® G75B and G77X, plus all three competitor grades.

Competitor A and B show the worst properties.

### Immersion in ethylenediamine (168h at 100°C) % change

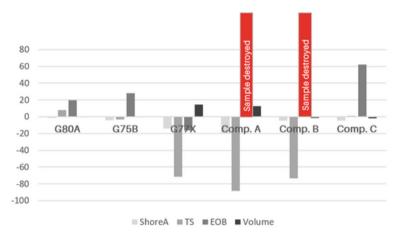


**ShoreA** = hardness **TS** = tensile strength **EOB** = elongation at break **Volume** = swell

### Images of the O-ring surfaces after ageing 20 x magnification

The test samples were BS 214 O-rings with each material grade tested side by side.




Summary:
Perlast® G80A
is a suitable
alternative to
competitor
grade C and
superior to
competitor
grade A and B
in amines.

### Immersion Testing in Steam

When immersed in steam for 168 hours at 250°C competitor grades A and B were destroyed.

Perlast® G80A, G75B and G77X outperformed all three competitor grades.

### Immersion in steam (168h at 250°C) % change



**ShoreA** = hardness **TS** = tensile strength **EOB** = elongation at break **Volume** = swell

### Images of the O-ring surfaces after ageing 20 x magnification

The test samples were BS 214 O-rings with each material grade tested side by side.





Summary:
Perlast® G80A
is a suitable
alternative to
competitor
grade C and
Perlast® G75B
and G80A are
superior to
competitor
grades A and B
in steam
applications.

### For more information on the Perlast® material range, contact:



**Enquire Now** 



Stuart Campton
Strategic Market Development
Leader - Fluorinated Products
SCampton@idexcorp.com



Jon Riley
Product ManagerIndustrial
jriley@idexcorp.com



Martins A. Omoniyi
Field Market Development
Engineer - Fluorinated Products
momoniyi@idexcorp.com

Perlast® perfluoroelastomers are exclusively manufactured by Precision Polymer Engineering. Perlast® is a registered trademark of Precision Polymer Engineering.



Precision Polymer Engineering | Greenbank Rd, Blackburn, BB1 3EA, England | 3201 S. Blue Bell Road, Brenham, TX 77833, USA.